

How To Safely Make Bevel Cuts Using The Bandsaw

Don't Hesitate To Ask For Help!

Work Piece Size Affects Which Tool To Use

ΤοοΙ	Maximum Thickness (45 and 90 degrees)	Minimum Length	Notes
Bandsaw – use the ½" blade	8-1/4"at 45° 13" at 90°	Minimum length: None Specified	 Smaller pieces up to larger pieces Risk of pinching and kick down Adjust table to required angle
Table Saw	1-7/8"at 45° 2-3/4"at 90°	Minimum length 12″	 Larger pieces Risk of pinching and kickback Adjust blade to required angle May require removal of blade guard assembly (safety devices) – proceed with caution Sleds may be available to simplify the cuts
Sliding Compound Miter Saw (Horizontal Work Piece)	2" at 45° 7" at 90°	Minimum length 12"	 Larger pieces Risk of pinching and kickback Can make compound cuts (e.g. crown molding)
Sliding Compound Miter Saw (Vertical Work Piece)	7" at 45° 7" at 90°	Minimum length 12″	 Larger pieces Risk of pinching and kickback Can make compound cuts (e.g. crown molding)
8" Jointer	7" at 45 [°] 8" at 90 [°]	Minimum length 12″	 Larger pieces Adjust fence to required angle Not normally used for bevel cuts but is a documented capability of the tool.
Router	Bit Dependent	Minimum length: None Specified	 Smaller pieces up to larger pieces Router bit defines the angle Not normally used for bevel cuts but can be used.
CNC	None Specified	Minimum length: None Specified	 Smaller pieces up to larger pieces CNC bit defines the angle Must complete training and be certified

Plan Your Work. How Much Material Will You Have For The First And Last Cut

Making Bevel Cuts Using The Bandsaw (Overview)

- Use the band saw with the $\frac{1}{2}$ " blade for straight cuts
- Square the table to the blade
- Set the bed to the desired angle (a second person makes this easier)
- If available, verify the angle using a digital angle gauge, digital angle finder, or other tool (e.g. protractor)
- Guide the work piece
 - Use the cross cut sled whenever possible
 - Built in clamp and stop block
 - Use the miter gauge when the cross cut sled won't work
 - Keep pressure down against the table surface
 - Keep pressure against the miter gauge
 - Clamp the work piece to the miter gauge if needed
- Never use the fence when using the miter gauge or the cross cut sled
 - Use a spacer block to set the length of the piece if required
- Make test cuts using scrap work pieces
 - Should be the same width and depth dimensions for best results
- Make final cuts
- Reposition the table so that the table is square to the blade

Setting The Angle

- Power off at the electrical disconnect
- Raise the upper blade guard

Lower the lower blade guard

• Zero any calibration tools while the blade is 90° to the table

• Square the miter gauge to the blade while the table is 90° to the blade

Setting The Angle (continued)

• Loosen the two handles (1 front, 1 rear) so that the table can move

Setting The Angle (continued)

• Set the table to the desired angle (additional hands help with this step)

• Secure the table position by tightening the two handles you previously loosened

• Verify the angle. Adjust as required.

Setting The Angle (continued)

• Raise the lower blade guard

Lower the upper blade guard

1/8" to 1/4" above the work piece (at its closest point)

Position The Work Piece And Make Cuts

• Use a cross cut sled or miter gauge to secure and guide the work piece

(Standard Miter Gauge)

(Cross Cut Sled)

• The cross cut sled's built in clamp simplifies the task of securing work pieces that would be dangerous to cut using other saws

- Power on at the electrical disconnect
- Make sample cuts and verify the angles
 - Sample work pieces should be the same width and thickness as the final keeper pieces
- Make your final cuts

Reposition The Table To 90°

- Power off at the electrical disconnect
- Raise the upper blade guard

Lower the lower blade guard

Loosen the two handles so that the table can move

Reposition The Table To 90° (continued)

• Square the table (90^o) to the blade (additional hands help with this step)

• Secure the table position by tightening the two handles you previously loosened

• Verify the angle. Adjust as required to ensure 90°

Reposition The Table To 90° (continued)

• Raise the lower blade guard

- Put away your material and tools
- Clean the area
- Power on at the electrical disconnect

Lower the upper blade guard

